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ABSTRACT

This paper considers dynamics of chains of flexible bodies undergoing large rigid body
motions, but small elastic deflections. The role of nonlinear strain-displacement relations in the
development of the motion equations correct to first order in elastic deflections is investigated. The
general form of these equations linearized only in the small elastic deflections is presented, and the
relative significance of various nonlinear terms is studied both analytically and through the use of
numerical simulations. Numerical simulations are performed for a two link chain constrained to
move in the plane, subject to hinge torques. Each link is modeled as a thin beam. Slew maneuver
simulation results are compared for models with and without properly modeled kinematics of
deformation. The goal of this case study is to quantify the importance of the terms in the equations
of motion which arise from the inclusion of nonlinear swain-displacement relations. It is concluded
that unless the consistently linearized equations in elastic deflections and speeds are available and
necessary, the inconsistently (prematurely) linearized equations should be replaced in all cases by
"ruthlessly" linearized equations: equations in which all nonlinear terms involving the elastic
deflections and speeds are ignored.

1 INTRODUCTION

In recent years a fundamental limitation of the finite element formulation of flexible
deformations in flexible multibody simulation programs such as TREETOPS[l], DISCOS[2], etc.
has been pointed out [3,4,5]. This limitation could be characterized as a premature linearization of
velocity expressions that is implicit in a linear finite element or modal formulation of the motion
equations for flexible bodies [4]. Kane et al. [6] demonstrated this flaw of such an approach
numerically by simulating a simple system consisting of a flexible beam attached to a rigid base
spinning in the plane. This simulation yielded the surprising and intuitively wrong result of the beam
diverging during a spin up maneuver [3]. Probably because of this simple example the "prematurely
linearized" equations of motion are said to lack the "spin-stiffening effect." Further study of this
simple system showed that this limitation of the traditional approach does not significantly affect
simulation results for some maneuvers typical of space dynamical systems, such as repositioning
slewing maneuvers and station keeping [4].

This paper presents a general discussion of the equations of motion of a flexible multibody
system undergoing motion with large rigid body rates (not just angular velocities) and rigid body
configuration changes, but with infinitesimal elastic deformations. The generic equations of motion
for such systems are presented; linearized only in elastic deformation amplitudes. The implicit
assumption here is that this is a useful set of motion equations: nonlinear in rigid body rates and
coordinates but linear in flexible coordinates and rates. Some of the terms in these motion equations
cannot be obtained with linear kinematics of elastic deformation (i.e., the traditional linear finite
element or modal formulation). This paper illuminates the form of these practically unobtainable (in
the general case) terms, evaluates their relative importance and examines the possible consistent

simplifications of the motion equations.
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The practical impact of these simplifications is investigated with the use of two case studies.
The consistent equations of motion, derived with nonlinear strain-displacement relations, are
explicitly given for two systems: 1) a single Bernoulli-Euler beam cantilevered to a rigid base
undergoing large rigid body, but small flexible motions in the plane; and, 2) a two-link, revolute,
planar, flexible manipulator consisting of three rigid bodies (shoulder, elbow and end effector)

connected by two Bernoulli-Euler beams. These two examples will serve to emphasize the general
discussion and to quantify the magnitudes of the neglected and retained terms in the equations of
motion. This will be done both analytically and through comparison of simulation results.

Before proceeding to a more general discussion of the "correct" linearized equations of
motion, a brief explanation of how these equations are obtained through proper linearization, and of
the role of nonlinear strain-displacement relations is in order.

2 NONLINEAR STRAIN-DISPLACEMENT AND PROPER LINEARIZATION

The problem that concerns us is that of obtaining the correctly linearized equations of motion
for an important class of systems which exhibit large rigid body motions but small elastic deflections.
By far the most common practice to date is to handle the flexibility through discretization of the
desired continuous system. This is achieved by representing the solution as a finite series of time-
dependent generalized elastic coordinates multiplied by space-dependent functions, as in an assumed
modes approach, or in a finite element formulation [7]. Whichever formulation one uses, in light of
the class of systems under study, the next step is to assume that these elastic coordinates, together
with the generalized elastic speeds, are infinitesimally small. In other words, we assume these

coordinates and speeds to be small enough so that only terms linear in them are kept in the equations
of motion, as terms of second order or higher are negligible.

Now that our goal is clearly stated, it should be an easy matter to obtain the linearized
equations of motion as long as we consistently drop all terms nonlinear in the elastic coordinates and

the corresponding generalized elastic speeds. Of course, the word "consistently" is the catch. When
do we linearize? That is to say: Does it matter at what step in our derivation of the equations of
motion we start to linearize? To answer this question we have to consider the process by which we
derive these equations.

Let us consider two of the more widely known methods to derive motion equations for
complex systems: Lagrange's equations of motion [8] and Kane's dynamical equations [9].
Lagrange's equations for a holonomic system with n generalized coordinates qk:

d f OL'__ BL
- Qk' =

L-T-V

(1)

where the Lagrangian L is a function of the system kinetic and potential energies (T and V

respectively). Qt are n generalized non-potential forces. The important thing to note is that using
this method to derive motion equations requires differentiating both the potential and kinetic energies
of the system with respect to the generalized coordinates and speeds. If these qi and ui (=dqi/dt)
were to represent our generalized elastic coordinates, we see that the above differentiations imply that
some terms linear in qi and ui in the energy expressions become terms of zeroth order in qi and ui.
More importantly, we see that terms of second order in the generalized coordinates and speeds in the

energy expressions become terms of first order in the resulting equations of motion. Clearly then in
order to obtain equations of motion correct to first order in qi and ui we need to have energy
expressions for our system that are correct to second order in these same elastic generalized
coordinates and speeds. More specifically the requirement demands in general that the expressions
for displacements and velocities used in determining potential and kinetic energies be correct to
second order in the elastic coordinates and speeds. Only by doing this can we ensure consistent
linearization.
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Kane's dynamical equations for a holonomic system of n particles with n generalized speeds

Fr + F_ = O

F_r= _v, "R*
i=1

p. n p.

V '---- _"-Vr'Ui +V
i=1

(r = 1, .... n)

, R* = - mi-d i

' Ui -- qi
(2)

where Fr is the generalized active force, Fr* is the generalized inertia force, Ri* is the inertia force for

particle Pi in an inertial reference frame, and vPi is the velocity of this particle in the same frame. VrPi

is the r-th partial velocity of particle Pi in the inertial frame. Using a similar argument as above, it is
easy to see that since the partial velocity has to be correct to fh'st order in the generalized coordinates
and speeds, and again this term is obtained through differentiation of the velocity with respect to the
generalized speeds, the velocity has to be correct to second order in qi and ui until we form the partial
velocities. This is necessary if we want our equations of motion to be consistently linear in the

generalized coordinates and speeds.

3 FORM OF THE EQUATIONS OF MOTION FOR A CHAIN OF ELASTIC

BODIES

The equations of motion of an open chain of elastic bodies can be expressed quite generally
as [10]:

Mre (x,q ) Mw, (x, q) q Tc.r xt,r

[ FR(x ' q"f" ' u) t+ Fe(x q,:c,u) u = it, (1)

where x is a vector of rigid body generalized coordinates; q is a vector of the elastic generalized
coordinates; MRe, MRE, MER, MEE form the configuration-dependent mass matrix; Tc is a vector of
control forces (as in joint-torque actuators in a manipulator); Text is a vector of other generalized
external forces; gEE is a constant stiffness matrix (see equation (2) below) and F is a vector of
nonlinear inertial (coriolis and centripetal) forces.

We are often interested in the important class of systems for which the elastic deformations
remain small so we can ignore terms of second order in q and u. Strictly speaking this requires that

Ilqll and Ilull be infinitesimally small. However we know that if, for example, our flexible body is
modelled as a beam, it is sufficient that the elastic deformations do not exceed one tenth of the length
of the beam in order to use linear Bernoulli-Euler beam theory. At any rate, given this assumption of

small elastic deflections, we could expand the previous equation in order to show more explicitly the
form of the nonlinear terms:

Mrr(x,q ) M_ (x, q) q = rc._ + _t.r

[ .-0 0 X n .2 1 y_ y. flii(x)ftiyc.
- 0 KEE q +.= )Xi +-2i=lj,i " J
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n n ?1

(MRR(X, q)) = m_lij(x )q, (MER(X, q)) = mT2ij(x )q
0 0 (2)

where n above is the number of rigid body coordinates;flii is a column matrix, but f20 andf3i are
n+m by m matrices, where m is the number of elastic coordihates.

In light of the discussion in the previous section, we could further write:

1 2

f2ij (x ) = f2ij (X ) + f2ij (x )

mlij(X )= mllij(x ) + m21ij(x )

m20(x )= mlij(x ) + m_q(x ) (3)

where the superscript 2 terms can only be obtained through the use of displacement and velocity
expressions, in the development of the equations of motion, that are accurate to second order in the
elastic generalized coordinates and speeds (q and u). This requires the use of nonlinear strain-
displacement relations [11,12], nonlinear kinematic constraints [6,4], or the use of a nonlinear

"geometric stiffening" term appended to the incorrectly linearized equations of motion [5,13].

The complexity of equations (2) and the difficulty involved in obtaining the nonlinear terms
have prompted attempts at simplification. It is common [10] for example to assume small velocities

and drop all terms nonlinear in rates. This results in rate-linear motion equations that greatly simplify
the dynamicist's task. It has been pointed out [14], however, that in the case of n-link rigid
manipulators in any configuration, the velocity and acceleration terms of the dynamic equations have
the same relative significance at any speed of movement. The fact that the omission of these terms

does not significantly affect simulation results is attributed to the fact that gravity and joint friction
usually overpower inertial terms. These results have not been extended to chains of flexible bodies.
One might argue that in some limit (i.e., vanishingly small q) the equations of motion of the flexible
multibody system should reduce to those of the rigid multibody system. Then it seems that a good
case could be made for the inclusion of at least nonlinear terms in the rigid body rates in our rate-
linear equations (i.e., fx#(x)), particularly considering the fact that future, fast, space manipulators
with low joint frictions are part of the class of systems under consideration.

Faced with this, we can proceed in two ways with respect to the equations of motion: we can
be consistent, or we can be selective. To be consistent requires keeping all terms of order Ilqll and Ilull

in equation (2), i.e., no simplification. We also encounter the problem that the superscript 2 terms in
equations (3) are not readily available in the general case since they depend on nonlinear elastic
theory or nonlinear kinematics of deformation for their derivation. We could just make do with the
superscript 1 terms in equations (3) (standard approach) but this would not be consistent nor

justifiable since there is no apriori reason to guarantee IIfg,_lll>> IIf2/_ll, for example.

We are forced then to be selective, at least in the general case. Now we have to rely mostly
on experience and simulation to determine which terms are important and which negligible under
given conditions. Using the simple example of a beam radially cantilevered to a spinning hub, an
empirical speed limit has been proposed beyond which the standard linear finite element or modal
formulations of the model give erroneous results [5]. This limit is specified as follows: the
magnitude of the spinning rate of the system has to be one order of magnitude less than the

fundamental bending frequency of the beam. We use this simulation result to claim the following:
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unless the equations of motion exact to f'rrst order in elastic generalized coordinates and speeds are
available, we are limited to rigid body angular rates less than an order of magnitude lower than the
lowest fundamental bending frequency of our system. In view of this, we might be able to model

our system accurately enough by just keeping the rate-linear equations together with terms flij. In

other words, we might as well drop all nonlinear terms involving elastic coordinates and speeds. We
further claim that speed or acceleration limits also exist in translational rates or accelerations, arising
from those mass matrix terms that depend on q and cannot be obtained through the standard

approaches. In the next section we investigate these claims analytically and through simulation.

In what follows we shall refer to three types of models for a flexible multibody system under

study. The "consistent" model will be that which retains all terms to first order in q and u, that is, the
consistently linearized model. The "inconsistent" model shall be that obtained through linear
kinematics of deformation, that is, one whose equations omit the superscript 2 terms mentioned

above. Finally, a "ruthlessly linearized," or simply "ruthless" model, shall be one in which the
nonlinear terms which include elastic coordinates and speeds are ignored, including those terms in
the mass matrix which depend on elastic coordinates. In other words, in our "ruthless" model

equations we ignore terms f2ij and f3i, and we assume the mass matrix depends on rigid body

configuration only.
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Fig. 1: Single Beam Attached

to a Moving Base

Fig. 2: Fundamental Bending

Frequency of Spinning Beam vs Spin Rate

4 TWO CASE STUDIES

4.1 One flexible body example
Consider a simple, slender, uniform beam cantilevered to a rigid body free to move in the

plane (see Fig. 1). The frame N, defined by the unit vectors nl, n2, n3, is inertial, and we
introduce the rotating frame A defined by the unit vectors al, a2, a3, attached to body A and whose
al axis lies along the undeformed neutral axis of the beam B initially. The consistently linearized

equations of motion for this system have been derived using Kane's dynamical equations together
with nonlinear strain-displacement relations. Shear and rotary inertia effects have been ignored (i.e.,
slender beam assumption). The equations of motion, exact to t-lrst-order in generalized elastic

coordinates and speeds are [15]:
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m A -!- m B

0

-_ Ei q i
i=l

n

- _._ ]2 (i q i
i =1

0

m A + m B

bm a + e

E.
J

z

i'l

-_._Eiq i ... 0
i =1

bm B + e ... E i

b2mB + 2eb + IB +'I A ... bE i+ F i

bE.+F .... G..
J J tJ

°,o

%°

(m A

n

+ mB)vff3 + v_(bm B + e)+ 2v3_.,Eiq _
i=1

n

--(m a + mB )v3v 1 + v2_._Eiq i
i=1

n

"v2v3_._Eiq i - V3Vl(bm B + e)
i =1

n tl I_

+ v2i_lGijq i -v2_._(bl2ij + Tlij)q i -v2v3_._12ijqi
"= i--1 i=1

!

°,, 0 ,.o

*** 0 ,°.

... 0 ... !

".. : qi

... -H.. ...
q

,," _ %°

where following Kane et al. [16] we have defined:

--IoPdX, e =- pdx, =- x2pdxm B

;oH.j =- EltP'_i(x )¢Zi (x )dx, E i - 2_ (x )pdx

I, L

0

(ij = 1,...,n)

and we have further def'med:

v 2

+

(1)
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L x

0 0

L x

..---I xpI?,,0

In deriving the above equations, we have assumed no external forces act on the beam for simplicity.
mA is the mass of the rigid body A; Vl and v2 are translational speeds of body A in the directions of
al and a2 respectively; v3 is the rotational speed of body A; qi are the n generalized elastic
coordinates, where we have discretized the transverse elastic deformation of the beam using assumed
modes.

Specializing equation (1) to the prescribed motion of uniform rotation of the base,

Vl = V2 = O, v3=g2----constant

we get:

. . t22(b_ij ]q
i_=l Gij#i + i-l_ ["iJ + + riij -- Gij) i = 0

(j = 1, .... n) (2)

Note that the terms/z# and 7/0 cannot be obtained using linear kinematics of deformation but are
obtained through the use of nonlinear strain-displacement relations. The term

_2(bt_ q + rl O)

is known as the geometric stiffness matrix for this specialized rigid body motion (rotation). It is easy
to observe from just this analytical study that in the absence of these terms our equations lose

stiffness with increasing angular rates/2, since:

(K ) n.. a2c,..= "L ....= - Joet¢i_(x )¢_j(x )dx
ij q _1

- 02¢ P_2i (x)O2j (x)dx

We note that for a variety of rnode shapes [17]:

L, i=j= O, i#j

2 L 2 f'_

(3)

(4)

so

eo?pL- _2pL, i = j(K)q= 0, i #y
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and it is clear that as long as 1"2<< co/the incorrect de-stiffening effect will not be apparent. This

clearly evidences the angular speed limit mentioned at the end of the previous section. As shall be
seen, this rotational rigid body rate limit is the most restrictive on the validity of other than the
correctly linearized equations for the maneuvers considered. Figure 2 shows the first bending

eigenfrequency as a function of _, as predicted by the three modelling approaches, each using the
same assumed modes.

If we now specialize equation (1) to the prescribed motion of constant translational
acceleration:

we obtain:

dul/dt = g = constant, v2 = v3 = 0

n

_, Gijqi + _,l(Hij - glAij) qi =0i=l "=

(j = 1, .... n) (5)

l.tij is in this case the operative geometric stiffness matrix. Now we can see that for g large enough,

we again obtain de-stiffening. Another way of looking at it is to realize that for g large enough the
stiffness matrix becomes non-positive definite which implies that the beam buckles due to its own

weight. The predicted buckling is correct, and would have been lost with the inconsistently or the
ruthlessly linearized approaches. This suggests that a translational rate or acceleration limit also
exists l_yond which our model is again grossly incorrect if we do not use equations exact to first
order. Inspection of equation (1) suggests that another rate limit exists, this one on the product of
rigid body rotational and translational rates, v2v3. Banerjee's recent work [13] suggests that as many
as 12 such independent limits on rigid body motion exist and must be considered for general three-
dimensional motion. It is doubtful that for typical stop-to stop slew and repositioning maneuvers
these limits become operative, since the magnitude of the applied forces is limited by the requirement
that the flexible body not deform excessively. This anticipation motivates the case study of the next
section.

4.2 Two-link flexible arm example

Consider a two-link flexible, revolute arm composed of three rigid bodies connected by two
slender uniform beams (see Fig. 3). The equations of motion for this system were derived using
Kane's dynamical equations together with nonlinear strain-displacement relations. The equations are
thus exact to first order in the beams' elastic generalized coordinates and speeds. We ignore
independent axial extensions of the beams (i.e., the axial strain at the neutral axis is assumed zero for
each beam). The elbow joint is actually modelled as two bodies: one attached to link 1 in a
cantilevered way and the other, free to rotate with respect to the first, with link 2 attached to it in a

cantilevered way also. Both elbow bodies arc rigid and share the hinge point but their mass centers
are allowed to be offset from the hinge point. As in the previous examples, the continuous
transverse displacements of the beams are discretized using an assumed modes approach. One
percent modal damping is added to the model to represent structural damping. Actuation is assumed
in the form of shoulder and elbow torques. The equations of motion for this system, which are quite
extensive, arc available in [12].

An examination of the equations of motion for this system makes it clear that the complexity
of the mass matrix and nonlinear inertial terms could be diminished immensely by dropping most
terms involving the generalized elastic coordinates and speeds (i.e., the "ruthless" case). It would be

advantageous to know, then, if these terms have a significant effect on the dynamics of a chain of
elastic bodies if we are limited to the low rotational speeds and translational accelerations encountered

during slew maneuvers with joint torques limited by the requirement that flexible deflections remain
small. In order to investigate this, we propose to examine the three models mentioned at the end of

section three, to note, consistent, inconsistent, and ruthless, as applied to the two link arm. The
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complexity of the motion equations precludesan analyticalstudy akin to the one presented in the

previous section. We will thereforerely entirelyon numerical simulation and compare the

performance of thethree"models" of the arm when itissubjectedtoa smooth slew maneuver.

5 NUMERICAL SIMULATION

The motion equations for the two-link, flexible, planar manipulator, consistently linearized in
small elastic deflections and speeds, were programmed in FORTRAN and implemented in a
VAXstation 2000. The code allows for a maximum of four cantilevered modes per beam. The mass

matrix is inverted using LU decomposition and a Runge-Kutta fourth-order scheme with adaptive

time step is utilized for the time integration [18]. Energy and angular momentum checks are built into
the simulation. Table 1 shows the physical properties assumed for the ann (see also Fig. 3). These
numbers were chosen to mimic an actual experimental testbed built at Martin Marietta by Dr. Eric

Schmitz [19].

Physical Properties of Planar Manipulator with Two Flexible Links

Mass of shoulder body (kg) 20.0

Mass density of link 1 (kg/m) 1.33937

Mass of elbow body (kg) 14.0

Mass density of link 2 (kg/m) 0.669685

Mass of tip body (kg) 2.0

Moments of Inertia (about axis perpendicular to plane):

Shoulder body (kgrn 2) 0.01

Elbow body (kgm 2) 0.03

Tip body (ksm2) 0.01

Length of link 1 (m) 0.9144

Length of link 2 (m) 0.9144

Other lengths (see Fig. 3):

bl (m) 0.0762

b21 (m) 0.0762

b22 (m) 0.0127

bt (m) 0.0508

Table 1: Physical Properties of the Two-link Manipulator

All the trajectories presented below were run in open loop after the torques had been
computed from the inverse dynamics problem (given the desired angular trajectories) assuming rigid
links for the manipulator. For all simulation runs, only two assumed modes per link were used,

since this gave adequate results and was computationally much cheaper than running the full four
modes per link. With two modes per link, the f'rrst two system vibration frequencies were obtained
to within three percent of the value obtained using four modes per link.

In the following, reference is made to time-scaled trajectories. Time-scaling of nominal
trajectories [20] is achieved by replacing time as the independent variable by the new variable

r= oft, o_>0

where o_ is a constant. When o_ is greater than one, the trajectory is sped up, while if tz is less than

one it is slowed down. From this it is apparent that rates scale like _ while accelerations, and thus

torques, scale like the square of a. These relations are used in the following sections to select a

scaling factor that yields a desired maximum value of angular rate, or a given maximum value of
torque to obtain desired maximum link tip deflections.

5.1 A Smooth Slew Maneuver

In section 4.1 it was predicted that the more severe limit on the validity of other than
consistently linearized equations would be the limit on rigid body angular rates. In the case of chains
of flexible bodies, as exemplified by the two-link manipulator in this simulation, the nonlinearity

arising from dependence on configuration makes it difficult to select a "characteristic" angular rate in
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the general case. This suggests a case by case approach. Several different slews were compared in
reference [12]. We report here only one, perhaps the most interesting.

The smooth trajectory is obtained by assuming a form of the joint angular dine histories of the
equivalent rigid manipulator that is quindc in dine. This allows the specification of angle, angular
rate and angular acceleration at the inidal and final dines of the trajectories [21]. This trajectory is a
deployment maneuver. Both links undergo significant rotational motion, and the outboard link
translates. Fig. 4 shows the computed torques for the nominal trajectory.
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Fig. 3: Schematic of' two-link Fig. 4: Computed Torques for

Planar Manipulator Second Smooth Trajectory (Nm)

Figure 5 shows the nominal trajectory. In this figure, plots for both the ruthless and the
consistent models have been overlaid. The inconsistent model fails for this case. The failure is a

numerical divergence during time integration. This is perhaps related to the fact that the angular rates

for the nominal maneuver arc as large as thirty percent of the "fundamental vibration frequency."
The system frequencies for the manipulator with locked joints arc seen to fluctuate from 3 rad/sec to
4 rad/sec for corresponding elbow relative angles of zero to 135 degrees [12]. For this reason, in the
case at hand reference is made to "one" fundamental frequency, and it is assumed that it lies in the
range specified above and is about 3.5 rad/sec. For the two models shown, the agreement is again
excellent for the shoulder angle and tip deflections, with the elbow angular position being off by only
a maximum of ten percent relative error.

Convergence of all three models is achieved if the nominal maneuver is slowed down

(cr=0.1685). Figure 6 shows that for this case, all three models yield identical results. This

conf'mns the predictions in section 4.1, and further suggests that within the limit of validity of the
inconsistent model, the ruthless is as good as the inconsistent, and actually better since it is much
easier to obtain. Note that the angular rates are well within ten percent of the fundamental.

The last case considered consists of the nominal trajectory scaled upwards in time (a=1.2).

As in the previous section, it was desired to reach the "hard" simulation limit of link tip deflections of
about ten percent of the link lengths. As Figure 7 shows, only the ruthless model did not fail under

the given speed-up of the trajectory, even though tip deflections should only be about four percent of
link lengths. This divergence is traceable to a near singularity of the mass matrix, related to the fact

that the links arc modeled with distributed mass, while they arc in fact nearly "massless springs."
The manipulator mass distribution is dominated by the elbow and the tip mass. Reference [12]

reports that the ratio of the largest to smallest mass malrix singular values is on the order of 106, and
that this range is configuration dcpendenL It is not known why this nurncrical ill-conditioning of the
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mass matrix appears to be exacerbated by including dependence upon elastic deformation, as in the
consistent model.

In summary, the above results again show a strong correlation between the limit of validity of
the inconsistent model and the maximum values of angular rates. In this case, however, no
"characteristic" rigid body rate is apparent. The limit at which the inconsistent model fails seems to

be even before any of the two angular rates (shoulder or elbow) reach ten percent of the fundamental
vibration frequency. A strong point can still be made, nevertheless, in that the ruthless model is as
good as the inconsistent whenever the inconsistent is valid, and more conservative since the ruthless

model does not fail. Even at high angular rates the ruthless model yields results that are
quantitatively very close to the consistent model results.

Finally, it is worth pointing out the excellent agreement in the tip deflections for both links, in

all cases. This is probably due to the fact that the equations of motion (see [12]) are elastically
decoupled, and, while inertially coupled, the elastic degrees of freedom mass matrix (M_._. of section
3) does not depend on elastic nonlinear terms due to linearization. Also, the agreement in shoulder
angle and angular rates is remarkable. This indicates that, depending on what state variable is of
interest in a given trajectory, the ruthless model will be as good as the more cumbersome consistent
model. In all cases, the ruthless is more conservative and better conditioned than the inconsistent
model.

5.2 Other Trajectories

The above qualitative results for the smooth slew maneuver have also been conf'lnred for two

other maneuvers: a smooth maneuver in which the elbow motion is kept to a minimum and the two-

link manipulator is slewed in extended configuration like a "beam"; and a time-optimal, bang-bang
control slew maneuver where joint torques were assumed limited. Details of these results, together
with an analysis of numerical considerations, can be found in [12].

6 SUMMARY AND CONCLUSIONS

Having looked into the general form of the linearized dynamics equations for chains of
flexible bodies undergoing large rigid body motions, but small elastic deflections, we concluded that
some terms cannot be obtained through the use of linear strain-displacement relations. These terms
were seen to be critical in the simple rotating beam example as they provide the geometric stiffness

terms necessary to obtain physical results. The absence of these terms in inconsistently linearized
equations limits their validity to relatively gentle rigid body motions. The fact that these terms are

unobtainable for the general case of an arbitrary flexible body led us to consider possible
simplifications of the general motion equations, consistent with such restrictions on their
applicability.

The two alternative models studied, the ruthlessly linearized model and the inconsistent

model, are subject to several limits in applicability. While the consistent model requires we keep
elastic coordinates and speeds small, the two alternative models will only be accurate if we further
maintain low rigid body angular rates. There also exists some translational acceleration or speed limit
that needs to be considered, although for the cases studied this limit was of no consequence. Within
the domain of validity of both simplified models, it appears the ruthless model yields results as
accurate as the correct consistently linearized model. In addition, preliminary results promise that the
ruthless model will result in large reductions in computational time in the simulation of large flexible
multibody systems. This coupled to the simplification of the dynamicist's task inherent in the
adoption of ruthlessly linearized models makes this option an attractive alternative.

From the above it is clear that the inconsistent model should never be used. Further, the

more cumbersome and hard to obtain consistent model should only be used when necessary (i.e.,
when the domain of validity of the simplified models is exceeded). Finally, it is our strong belief that
the ruthless model deserves widespread use.

Simulation misbehavior at certain trajectories for relatively high rigid body angular rates was
tracked down to numerical ill-conditioning of the configuration dependent mass matrix. This
problem was attributed to modelling error inherent in choosing cantilever (clamped-free) modes to
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model the flexible deflections of the manipulator links. In ref. [12] it is suggested that this results in
effectively modelling one (or more) massless degrees of freedom. Thus it became apparent that
physical modelling of bodies, and adequate selection of assumed modes and numerical procedures,
can be as important as sensible simplifications of the motion equations.
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